\qquad
\qquad
\qquad
Symbol No. in Words: \qquad Code No. \square
i. Answers should be given by filling the Multiple-Choice Questions' Answer Sheet.
ii. Rough can be done in the main answer sheet
iii. Maximum time of 20 minutes within the total time is given for this group.

1. The determinant of an orthogonal matrix is
A. 1
b. -1
c. ± 1
d. 0
2. If λ is eigenvalue of matrix A then $\frac{1}{\lambda}$ is eigenvalue of the matrix
a. A^{T}
b. $-\mathrm{A}^{\mathrm{T}}$
c. A^{-1}
d. none
3. For what value of k, do the equations $x+3 y=1$ and $4 x+12 y=k$ have infinite solutions:
a. 0
b. 1
c. -4
d. 4
4. The inverse Laplace transform of $\tan ^{-1}\left(\frac{2}{s}\right)$ is
a. $\sin 2 \mathrm{t}$
b. $t \sin 2 t$
c. $\frac{\sin 2 t}{t}$
d. $t^{2} \sin 2 t$
5. The Laplace transform of $\mathrm{t}^{3} \mathrm{e}^{2 t}$ is
a. $\frac{6}{(s-2)^{4}}$
b. $\frac{4!}{(s-2)^{4}}$
c. $\frac{4!}{(s+2)^{4}}$
d. $\frac{6}{(s+2)^{3}}$
6. The Fourier series expansion of an even periodic functions contains
a. only cosine term
b. cosine term and constant
c. only sine term
d. sine term and constant.
7. The constant term in the Fourier series expansion of $f(x)=|x|$ in $(-1,1)$ is
a. π
b. 1
c. -1
d. $\frac{1}{2}$
8. The inequality $\mathrm{Ax} \geq \mathrm{b}$ can be converted into equality by using
a. slack variable
c. surplus variable
b. artificial variable
d. none
9. If c represent a line segment between $(0,0,0)$ and $(1,1,1)$ then

$$
\int_{c}(y+z) d x+(x+z) d y+(x+y) d z
$$

a. 3
b. 4
c. 2
d. 0
10. Area of region R bounded by curve C is given by
a. $\int_{c} x d y-y d x$
b. $\frac{1}{2} \int_{c} x d y-y d x$
c. $\int_{c} x d y+y d x$
d. $\frac{1}{2} \int_{c} x d y+y d x$

Multiple Choice Questions' Answer Sheet
Marks Secured: \qquad
In Words:

Examiner's Sign: \qquad Date: \qquad
Scrutinizer's Marks: \qquad In Words: \qquad
Scrutinizer's Sign: \qquad Date: \qquad

1. (A) (B) (C) (D)	6. (A) (B) (C) (D)
2. (A) (B) (C) (D)	7. (A) (B) (C) (D)
3. (A) (B) (C) (D)	8. (A) (B) (C) (D)
4. (A) (B) (C) (D)	9. (A) (B) (C) (D)
5. (A) (B) (C) (D)	10. (A) (B) (C) (D)

MANMOHAN TECHNICAL UNIVERSITY
 Office of the Controller of Examinations
 Exam Year: 2080, Push

School: SOE	Level: BE	Program: BCE, BEEE
Year/Part: II/I (Model Question)		
Subject: Engineering Mathematics III (EG501SH)		
\checkmark	Candidates are required to give their answers in their own words as far as practicable.	
\checkmark	The figures in the margin indicate Full Marks.	
\checkmark	Assume suitable data if necessary.	

Time: 3 Hours
Full Marks: 50
Pass Marks: 20
$\checkmark \quad$ Candidates are required to give their answers in their own words as far as practicable.
\checkmark Assume suitable data if necessary.
GROUP A (Multiple-Choice Questions and Answer Sheet in separate paper)

GROUP B (Attempt Any Eight)

1. Prove that every complex square matrix can be expressed uniquely as the sum of Hermitian and skew-Hermitian matrix.
2. Find the rank of the matrix by reducing echelon form $\left[\begin{array}{cccc}1 & 3 & -2 & 1 \\ 1 & 1 & 1 & 1 \\ 2 & 0 & -3 & 2 \\ 3 & 3 & -3 & 3\end{array}\right]$.
3. Find inverse Laplace transform of $\frac{s^{2}+6}{\left(s^{2}+1\right)\left(s^{2}+4\right)}$.
4. Find Laplace transform of $f(t)=\left\{\begin{array}{rr}t^{2} ; & 0<t<1 \\ 4 t ; & t>1\end{array}\right.$.
5. Obtain half range Fourier sine series for the function e^{x} in $0<\mathrm{x}<1$.
6. Solve given LPP by graphical method

$$
\operatorname{Max} z=5 x+3 y
$$

Subject to

$$
\begin{array}{r}
3 x+5 y \leq 15 \\
5 x+2 y \leq 10 \\
x, y \geq 0 . \tag{2}
\end{array}
$$

7. Test the consistency of the system of equations

$$
\begin{aligned}
x+y+z & =-3 \\
3 x+y-2 z & =-2 \\
2 x+4 y+7 z & =7 . \text { If consistent find its solution. }
\end{aligned}
$$

8. Using Green's theorem, find area of ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$.
9. Show that $\vec{F}=y z \vec{\imath}+z x \vec{\jmath}+x y+\vec{k}$ is irrotational and also find its scalar potential function.

GROUP C (Attempt Any Six)

1. Express $\left|\begin{array}{cccc}b^{2}+c^{2}+1 & c^{2}+1 & b^{2}+1 & b+c \\ c^{2}+1 & c^{2}+a^{2}+1 & a^{2}+1 & c+a \\ b^{2}+1 & a^{2}+1 & a^{2}+b^{2}+1 & a+b \\ b+c & c+a & a+b & 3\end{array}\right|$ as the square of determinant and hence find its value.
2. Verify Cayley - Hamilton theorem for the matrix $A=\left[\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right]$. Also find its inverse.
3. Obtain the Fourier series for the function $\mathrm{x}-\mathrm{x}^{2}$ from $-\pi$ to π and hence deduce that $\frac{\pi^{2}}{12}=\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\frac{1}{5^{2}}-\cdots$
4. Solve following LPP using dual method

$$
\operatorname{Min} P=4 x+3 y+8 z
$$

Subject to

$$
\left[\begin{array}{lll}
1 & 0 & 1 \tag{4}\\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \geq\left[\begin{array}{l}
2 \\
5
\end{array}\right]
$$

5. Verify Gauss' divergence theorem for $\vec{F}=x^{2} \vec{\imath}+z \vec{\jmath}+y z \vec{k}$ where v is the region bounded by the cube $\mathrm{x}=0, \mathrm{x}=1, \mathrm{y}=0, \mathrm{y}=1, \mathrm{z}=0, \mathrm{z}=1$.
6. Find the work done in moving particle in the field $\vec{F}=(x-y) \vec{\imath}+(x+y) \vec{\jmath}$ along one round of the curve bounded by $y^{2}=x$ and $y=x^{2}$.
7. p Define Laplace transform. Solve the differential equation by using Laplace transform: $Y^{\prime \prime}+4 y^{\prime}+3 y=t$ given that $y(0)=0, y^{\prime}(0)=1$.
