Symbol Number:	_ Invigilator's Sign:	_ Superintendent's Sign:	
Symbol No. in Words:		Code No	

- -

	Level: BE	Program: BCE, BEEE	Exam Year: 2080, Push	
Subject: Engineering M	athematics III (EG501S	H)	Year/Part: II/I (Model Question)	
GROUP A (Multiple-Choice Ouestions)			[10x1=10	
i. Answers shou ii. Rough can be iii. Maximum tin	ld be given by filling the M done in the main answer ne of 20 minutes within the	<i>Aultiple-Choice Questions' Answer sheet e total time is given for this group</i>	Code No.	
1. The determin	ant of an orthogonal mat	rix is		
A.1	-	b1		
c. ±1		d. 0		
2. If λ is eigenva	lue of matrix A then $\frac{1}{2}$ is e	eigenvalue of the matrix		
a. A ^T	λ	b. –A ^T		
c. A ⁻¹		d. none		
3. For what valu	e of k, do the equations x	x+3y = 1 and $4x+12y = k$ have inf	inite solutions:	
a. 0		b. 1		
c4		d. 4		
4. The inverse L	aplace transform of tan^-	$(\frac{2}{2})$ is		
a. sin2	t	b. t sin2t		
$C_{t} = \frac{\sin 2t}{2}$		d. t ² sin2t		
5. The Laplace t	transform of t ³ e ^{2t} is			
		b ^{4!}		
$\mathbf{d.} \frac{1}{(s-2)}$	4	$0.\frac{(s-2)^4}{(s-2)^4}$		
$C \cdot \frac{4!}{(s+2)^4}$		$d \cdot \frac{6}{(s+2)^3}$		
6. The Fourier	series expansion of an eve	en periodic functions contains		
a. only c	cosine term	b. cosine te	erm and constant	
c. only s	ine term	d. sine terr	m and constant.	
7. The constant	term in the Fourier serie	es expansion of $f(x) = x $ in (-1,1)	is	
a. <i>π</i>		b. 1		
c1		$d_{\frac{1}{2}}$		
8 The inequalit	x Ax > b can be converted	d into equality by using		
a. slac	ck variable	c. surplus v	variable	
b. arti	ficial variable	d. none		
9. If c represen	t a line segment between	(0,0,0) and (1,1,1) then		
	\int_{C} ((y+z)dx + (x+z)dy + (x+y)	dz	
a.3	C C	b.4		
c. 2		d. 0		
10. Area of regi	on R bounded by curve C	is given by		
$a.\int_{C} xd$	y - ydx	b. $\frac{1}{2}\int_c xc$	dy - ydx	
6				

Multiple Choice Questions' Answer Sheet					
Marks Secured:	•				
In Words:	Corrected Fill	1. A B C D	6. A B C D		
Examiner's Sign: Date:		2. A B C D	7. A B C D		
Scrutinizer's Marks:		3. A B C D	8. A B C D		
In Words:		4. A B C D	9. A B C D		
Scrutinizer's Sign: Date:		5. A B C D	10. A B C D		

		MANMOHAN Office of the C Exan	TECHNICA ontroller o m Year: 2080	L UN f Exa , Push	IVERSITY minations	
School	: SOE	Level: BE		Prog	ram: BCE, BEEE	Time: 3 Hours
Year/Part: II/I (Model Question)			Full Marks: 50			
Subjec	t: Engineering Mathe	matics III (EG502	LSH)			Pass Marks: 20
✓ ✓ ✓	Candidates are require The figures in the marg Assume suitable data ig	d to give their ans iin indicate Full M ^c necessary.	wers in their o arks.	wn wo	rds as far as practicable.	
GROUI	P A (Multiple-Choice Q	uestions and Ans	wer Sheet in s	separa	ite paper)	[10x1=10]
GROUI	P B (Attempt Any Eight	t)				[2x8=16]
1.	Prove that every co of Hermitian and sk	mplex square m æw-Hermitian n	atrix can be e natrix.	expres	ssed uniquely as the su	ım [2]
2.	Find the rank of the	matrix by redu	cing echelon	form	$\begin{bmatrix} 1 & 3 & -2 & 1 \\ 1 & 1 & 1 & 1 \\ 2 & 0 & -3 & 2 \\ 3 & 3 & -3 & 3 \end{bmatrix}$	[2]
3.	Find inverse Laplac	e transform of $\frac{1}{(2)}$	$\frac{s^2+6}{s^2+1)(s^2+4)}$.			[2]
4.	Find Laplace transf	orm of $f(t) = \begin{cases} t^2; \\ 4t; \end{cases}$	$\begin{array}{c} 0 < t < 1 \\ t > 1 \end{array}$			[2]
5.	Obtain half range Fo	ourier sine serie	s for the fund	ction e	e^x in 0 < x < 1.	[2]
6.	Solve given LPP by	graphical metho	$d = F_{x} + 2u$			
	Subject	to	z = 3x + 3y			
	,	3 <i>x</i>	$+5y \le 15$			
		5 <i>x</i>	$+2y \le 10$	`		[2]
7	Test the consistence	v of the system ($x, y \ge 0$).		[-]
	X + V +	z = -3	of equations			
	3x + y -2	z = -2				[1+1]
	2x + 4y	+7z = 7. If cons	istent find its	solut	ion.	[1+1]
8.	Using Green's theor	em, find area of	ellipse $\frac{x^2}{9}$ +	$\frac{y}{16} = 1$	1.	[2]
9.	Show that $\vec{F} = yz \vec{\iota}$	$+zx\vec{j}+xy+\vec{k}$	is irrotation	al and	l also find its scalar	[1+1]
	potential function.					
GROUI	P C (Attempt Any Six)					
1.	Express $\begin{vmatrix} b^2 + c^2 + c^2 + c^2 + 1 \\ b^2 + 1 \\ b + c \end{vmatrix}$ determinant and he	$1 \qquad c^{2} + 1 \\ c^{2} + a^{2} + 1 \\ a^{2} + 1 \\ c + a \\ ence find its value$	$b^{2} + 1$ $a^{2} + 1$ $a^{2} + b^{2} + 1$ a + b ne.	b c 1 c	$\begin{vmatrix} b + c \\ c + a \\ a + b \\ 3 \end{vmatrix}$ as the square of	[2+2]
2	Verify Cayley - Har	uilton theorem fo	or the matrix	$\Delta = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$	2 2 1] 1 3 1 Also find its	

- 2. Verify Cayley Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$. Also find its inverse. [3+1]
- 3. Obtain the Fourier series for the function $x x^2$ from $-\pi$ to π and hence deduce that $\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \frac{1}{5^2} - \cdots$ [3+1] P.T.O.

4. Solve following LPP using dual method

$$\begin{array}{l} \operatorname{Min} P = 4x + 3y + 8z \\ \text{Subject to} \\ \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \ge \begin{bmatrix} 2 \\ 5 \end{bmatrix}. \tag{4}$$

- 5. Verify Gauss' divergence theorem for $\vec{F} = x^2\vec{\iota} + z\vec{\jmath} + yz\vec{k}$ where v is the region bounded by the cube x = 0, x = 1, y = 0, y = 1, z = 0, z = 1. [4]
- 6. Find the work done in moving particle in the field $\vec{F} = (x y)\vec{\iota} + (x + y)\vec{j}$ along one round of the curve bounded by $y^2 = x$ and $y = x^2$. [4]
- 7. p Define Laplace transform. Solve the differential equation by using Laplace transform: Y'' + 4y' + 3y = t given that y(0) = 0, y'(0) = 1. [1+3]

 $\infty \infty$ The End $\infty \infty$